Alprazolam as an in vivo probe for studying induction of CYP3A in cynomolgus monkeys.
نویسندگان
چکیده
Induction of the cytochrome P450 (P450) enzyme is a major concern in the drug discovery processes. To predict the clinical significance of enzyme induction, it is helpful to investigate pharmacokinetic alterations of a coadministered drug in a suitable animal model. In this study, we focus on the induction of CYP3A, which is involved in the metabolism of approximately 50% of marketed drugs and is inducible in both the liver and intestine. As a marker substrate for CYP3A activity, alprazolam (APZ) was selected and characterized using recombinant CYP3A enzymes expressed in Escherichia coli. Both human CYP3A4 and its cynomolgus P450 ortholog predominantly catalyzed APZ 4-hydroxylation with sigmoidal kinetics. When administered intravenously and orally to cynomolgus monkeys, APZ had moderate clearance; its first-pass extraction ratio after oral dosing was estimated to be 0.09 in the liver and 0.45 in the intestine. Pretreatment with multiple doses of rifampicin (20 mg/kg p.o. for 5 days), a known CYP3A inducer, significantly decreased plasma concentrations of APZ after intravenous and oral administrations (0.5 mg/kg), and first-pass extraction ratios were increased to 0.39 in the liver and 0.63 in the intestine. The results were comparable to those obtained in clinical drug-drug interaction (DDI) reports related to CYP3A induction, although the rate of recovery of CYP3A activity seemed to be slower than rates estimated in clinical studies. In conclusion, pharmacokinetic studies using APZ as a probe in monkeys may provide useful information regarding the prediction of clinical DDIs due to CYP3A induction.
منابع مشابه
Dmd057224 839..843
It has been proposed that in humans 4b-hydroxycholesterol is formed mainly by CYP3A-catalyzed metabolism of cholesterol and thus may serve as an endogenous marker for CYP3A activity. The cynomolgus monkey is widely used as one of the nonrodent preclinical safety species in pharmaceutical research. In the current study, the potential application of 4b-hydroxycholesterol as an endogenous biomarke...
متن کاملDmd057224 839..843
It has been proposed that in humans 4b-hydroxycholesterol is formed mainly by CYP3A-catalyzed metabolism of cholesterol and thus may serve as an endogenous marker for CYP3A activity. The cynomolgus monkey is widely used as one of the nonrodent preclinical safety species in pharmaceutical research. In the current study, the potential application of 4b-hydroxycholesterol as an endogenous biomarke...
متن کامل4β-Hydroxycholesterol as an endogenous biomarker of CYP3A activity in cynomolgus monkeys.
It has been proposed that in humans 4β-hydroxycholesterol is formed mainly by CYP3A-catalyzed metabolism of cholesterol and thus may serve as an endogenous marker for CYP3A activity. The cynomolgus monkey is widely used as one of the nonrodent preclinical safety species in pharmaceutical research. In the current study, the potential application of 4β-hydroxycholesterol as an endogenous biomarke...
متن کاملThe Role of Cyp3a4/5 in Alprazolam Metabolism
Cytochrome P450 3A (CYP3A) enzyme family is involved in the metabolism of about 50 % of all drugs in clinical use. Among CYP3A, CYP3A4 and CYP3A5 are the major enzymes in adults; CYP3A5 is polymorphic and primarily expressed in black populations. CYP3A5 may therefore contribute significantly to the metabolism of CYP3A substrates in African populations. The impact of CYP3A5 expression on drug me...
متن کاملPrediction of the intestinal first-pass metabolism of CYP3A substrates in humans using cynomolgus monkeys.
To select high bioavailability compounds, it is necessary to predict the first-pass metabolism in the intestine. However, in vitro-in vivo predictions of the intestinal metabolism have proven both challenging and less definitive. The purpose of this study was to investigate prediction of intestinal first-pass metabolism in humans using cynomolgus monkeys. First, we investigated intrinsic metabo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 38 10 شماره
صفحات -
تاریخ انتشار 2010